A Recursive Update Model for Estimating High-Resolution LAI Based on the NARX Neural Network and MODIS Times Series

Author:

Wang Jian,Wang JindiORCID,Shi Yuechan,Zhou Hongmin,Liao Limin

Abstract

Leaf area index (LAI) remote sensing data products with a high resolution (HR) and long time series are in demand in a wide variety of applications. Compared with long time series LAI products with 1 km resolution, LAI products with high spatial resolution are difficult to acquire because of the lack of remote sensing observations in long-term sequences and the lack of estimation methods applicable to highly variable land-cover types. To address these problems, we proposed a recursive update model to estimate 30 m resolution LAI based on the updated Nonlinear Auto-Regressive with Exogenous Inputs (NARX) neural network and MODIS time series. First, we used a variety of HR satellite remote sensing observations to produce HR datasets for recent years. Historical low spatial resolution MODIS products were employed as background information and used to calculate the initial parameters of the NARX neural network for each pixel. Subsequently, one year’s reflectance from the HR dataset was used as the new observation that was input into the NARX model to estimate the HR LAI of that year, and the background and HR data were then used for remodeling to update the NARX model parameters. This procedure was recursively repeated year by year until both MODIS background data and all HR data were involved in the modeling. Finally, we obtained an LAI time series with 30 m resolution. In the cropland study area in Hebei Province, China, the results were compared with LAI measurements from ground sites in 2013 and 2014. A high degree of similarity existed between the results for the two study years (RMSE2013=0.288 and RMSE2014=0.296). The HR LAI estimates showed favorable spatiotemporal continuity and were in good agreement with the multisample ground survey LAI measurements. The results indicated that for data with a rapid revisit cycle and high spatial resolution, the recursive update model based on the NARX neural network has excellent LAI estimation performance and fairly strong fault-tolerance capability.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3