Satellite Video Moving Vehicle Detection and Tracking Based on Spatiotemporal Characteristics

Author:

Li Ming1,Fan Dazhao1,Dong Yang1,Li Dongzi1

Affiliation:

1. Institute of Geospatial Information, Information Engineering University, 62 Science Avenue, Zhengzhou 450001, China

Abstract

The complex backgrounds of satellite videos and serious interference from noise and pseudo-motion targets make it difficult to detect and track moving vehicles. Recently, researchers have proposed road-based constraints to remove background interference and achieve highly accurate detection and tracking. However, existing methods for constructing road constraints suffer from poor stability, low arithmetic performance, leakage, and error detection. In response, this study proposes a method for detecting and tracking moving vehicles in satellite videos based on the constraints from spatiotemporal characteristics (DTSTC), fusing road masks from the spatial domain with motion heat maps from the temporal domain. The detection precision is enhanced by increasing the contrast in the constrained area to accurately detect moving vehicles. Vehicle tracking is achieved by completing an inter-frame vehicle association using position and historical movement information. The method was tested at various stages, and the results show that the proposed method outperformed the traditional method in constructing constraints, correct detection rate, false detection rate, and missed detection rate. The tracking phase performed well in identity retention capability and tracking accuracy. Therefore, DTSTC is robust for detecting moving vehicles in satellite videos.

Funder

The National Natural Science Foundation of China

Program of Song Shan Laboratory

The High Resolution Remote Sensing, Surveying and Mapping Application Demonstration System

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3