Characterizing Bodyweight-Supported Treadmill Walking on Land and Underwater Using Foot-Worn Inertial Measurement Units and Machine Learning for Gait Event Detection

Author:

Song Seongmi1ORCID,Fernandes Nathaniel J.2ORCID,Nordin Andrew D.134ORCID

Affiliation:

1. Division of Kinesiology, Texas A&M University, College Station, TX 77843, USA

2. Department of Computer Science & Engineering, Texas A&M University, College Station, TX 77843, USA

3. Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA

4. Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA

Abstract

Gait rehabilitation commonly relies on bodyweight unloading mechanisms, such as overhead mechanical support and underwater buoyancy. Lightweight and wireless inertial measurement unit (IMU) sensors provide a cost-effective tool for quantifying body segment motions without the need for video recordings or ground reaction force measures. Identifying the instant when the foot contacts and leaves the ground from IMU data can be challenging, often requiring scrupulous parameter selection and researcher supervision. We aimed to assess the use of machine learning methods for gait event detection based on features from foot segment rotational velocity using foot-worn IMU sensors during bodyweight-supported treadmill walking on land and underwater. Twelve healthy subjects completed on-land treadmill walking with overhead mechanical bodyweight support, and three subjects completed underwater treadmill walking. We placed IMU sensors on the foot and recorded motion capture and ground reaction force data on land and recorded IMU sensor data from wireless foot pressure insoles underwater. To detect gait events based on IMU data features, we used random forest machine learning classification. We achieved high gait event detection accuracy (95–96%) during on-land bodyweight-supported treadmill walking across a range of gait speeds and bodyweight support levels. Due to biomechanical changes during underwater treadmill walking compared to on land, accurate underwater gait event detection required specific underwater training data. Using single-axis IMU data and machine learning classification, we were able to effectively identify gait events during bodyweight-supported treadmill walking on land and underwater. Robust and automated gait event detection methods can enable advances in gait rehabilitation.

Funder

Huffines Student Research Grant program

J.L. Huffines Institute for Sports Medicine

Human Performance and the SEHD Graduate Research Grant

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3