Maximize Lifetime of Wireless Rechargeable Sensor Networks with Mobile Energy-Limited Charging Device

Author:

Liu Guoqing1,Chen Yaqian2,Jiao Wanguo2ORCID

Affiliation:

1. Nanjing Research Institute of Electronics Technology, Nanjing 210039, China

2. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China

Abstract

Mobile charging devices (MCDs) have been regarded as a promising way to solve the energy shortage of wireless sensor networks. Due to ignoring some important factors, such as redundant sensor nodes, there is still room to improve network lifetimes. We propose a charging strategy for wireless sensor networks with one energy-limited MCD. To give the best support for sensor nodes which need charging the most, an algorithm is proposed to find the minimum sensor nodes which keep the coverage and connectivity of the network and have the least energy requirements. Then, the goal of maximizing network lifetime is changed into how to utilize the limited energy of the MCD to guarantee the minimum sensor nodes work as long as possible. If the MCD has enough energy for all sensor nodes, the charging algorithm is designed to minimize the outage time of the network and maximize charging efficiency. Otherwise, if the energy capacity is larger than the least energy requirement, the charging target minimizes the outage time of the minimum sensor node; otherwise the charging problem becomes maximizing the lifetime of minimum sensor nodes, which has lower complexity. The results of simulation experiments confirm that our scheme prolongs network lifetime and improves charging efficiency.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3