Abstract
Glutathione transferases (GSTs) are enzymes that play a critical role in cellular detoxication by catalyzing the nucleophilic attack of glutathione on the electrophilic center of a number of xenobiotic compounds, including many therapeutic drugs. Mutations of amino acid residues in the glutathione-binding site of human glutathione transferase P1–1, namely W39C, K45A, Q52A, Q52K, and Q52E, have been engineered. The recombinant mutant proteins were expressed in Escherichia coli, but only mutants K45A, Q52A, and Q52K showed measurable activity. Steady-state kinetics comparing glutathione with the alternative thiol substrate γ-glutamylcysteine demonstrated the importance of the glycine residue in glutathione for high catalytic efficiency. Inhibition experiments with a set of glutathione analogs structurally related to the therapeutic drugs Telintra and Telcyta enabled determination of binding energies that were contributed by different substituents. The effects of substituting amino acid side chains in the glutathione-binding site of the enzyme on binding the glutathione derivatives and catalysis were evaluated.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献