Ascophyllum nodosum Extract and Mycorrhizal Colonization Synergistically Trigger Immune Responses in Pea Plants against Rhizoctonia Root Rot, and Enhance Plant Growth and Productivity

Author:

Rashad Younes M.ORCID,El-Sharkawy Hany H. A.,Elazab Nahla T.

Abstract

Rhizoctonia root rot is one of the most destructive diseases affecting pea crops, resulting in up to 75% loss. In this study, the biocontrol activity of seaweed (Ascophyllum nodosum) extract at 1, 2, and 3% and/or mycorrhization of pea roots was investigated against Rhizoctonia root rot under greenhouse conditions. In addition, their effects on the transcriptional, physiological, ultrastructural, and growth status of pea plants were also studied. The results showed that the mycorrhizal colonization of pea roots and the application of the seaweed extract at 3% synergistically overexpressed the responsive factor (JERF3) recording 18.2-fold, and the defense-related genes peroxidase (23.2-fold) and chitinase II (31.8-fold). In addition, this treatment improved the activity of the antioxidant enzymes POD and PPO, increased the phenolic content in pea roots, and triggered multiple hypersensitivity reactions at the ultrastructural level of the cell, leading to a 73.1% reduction in disease severity. Moreover, a synergistic growth-promoting effect on pea plants was also observed. The photosynthetic pigments in pea leaves were enhanced in response to this dual treatment, which significantly improved their yield (24 g/plant). The inducing effect of mycorrhizal colonization on plant resistance and growth has been extensively studied. However, developing improved and synergistically acting biological agents for plant disease control and growth promotion as alternatives to the chemical fungicides is crucial for safety and food security. Based on these results, it can be concluded that the mycorrhizal colonization of pea roots and soaking their seeds in the A. nodosum extract at 3% have a promising and improved biocontrol activity against R. solani, and a growth-promoting effect on pea plants. However, field applications should be evaluated prior to any use recommendations.

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3