Genome Sequence and Analysis of the Flavinogenic Yeast Candida membranifaciens IST 626

Author:

Palma MargaridaORCID,Mondo Stephen,Pereira Mariana,Vieira Érica,Grigoriev Igor V.,Sá-Correia IsabelORCID

Abstract

The ascomycetous yeast Candida membranifaciens has been isolated from diverse habitats, including humans, insects, and environmental sources, exhibiting a remarkable ability to use different carbon sources that include pentoses, melibiose, and inulin. In this study, we isolated four C. membranifaciens strains from soil and investigated their potential to overproduce riboflavin. C. membranifaciens IST 626 was found to produce the highest concentrations of riboflavin. The volumetric production of this vitamin was higher when C. membranifaciens IST 626 cells were cultured in a commercial medium without iron and when xylose was the available carbon source compared to the same basal medium with glucose. Supplementation of the growth medium with 2 g/L glycine favored the metabolization of xylose, leading to biomass increase and consequent enhancement of riboflavin volumetric production that reached 120 mg/L after 216 h of cultivation. To gain new insights into the molecular basis of riboflavin production and carbon source utilization in this species, the first annotated genome sequence of C. membranifaciens is reported in this article, as well as the result of a comparative genomic analysis with other relevant yeast species. A total of 5619 genes were predicted to be present in C. membranifaciens IST 626 genome sequence (11.5 Mbp). Among them are genes involved in riboflavin biosynthesis, iron homeostasis, and sugar uptake and metabolism. This work put forward C. membranifaciens IST 626 as a riboflavin overproducer and provides valuable molecular data for future development of superior producing strains capable of using the wide range of carbon sources, which is a characteristic trait of the species.

Funder

Fundação para a Ciência e Tecnologia

Programa Operacional Regional de Lisboa 2020

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3