Affiliation:
1. National Energy Research Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, China
Abstract
The ever-increasing global energy demand, juxtaposed with critical concerns about greenhouse gas emissions, emphatically underscores the urgency to pivot toward sustainable and eco-friendly energy alternatives. Tapping into microbial metabolism for clean energy generation stands out as a particularly promising avenue in this endeavor. Given this backdrop, we delved deeply into the metabolic engineering potential of Saccharomyces cerevisiae, thereby aiming for the bioconversion of formate and acetate—both CO2 derivatives—into free fatty acids (FFAs) as precursors for biofuel production. Our study not only elucidated the metabolic pathways within S. cerevisiae that are tailored for efficient formate and acetate utilization but also shone a light on the meticulous optimization strategies that amplify FFA synthesis. The engineered strains, under refined conditions, exhibited up to an 8-fold increase in an FFA titer, thus reaching a production level of 6.6 g/L, which showcases the potential of microbial metabolism in clean energy generation. Our findings offer a promising step toward harnessing microbial metabolism for sustainable energy production, thereby bridging the gap between waste carbon utilization and greener fuel alternatives.
Funder
National Key Research and Development Program of China
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science