Transcriptional and Metabolic Response of Wine-Related Lactiplantibacillus plantarum to Different Conditions of Aeration and Nitrogen Availability

Author:

Binati Renato L.ORCID,Du Toit MaretORCID,Snoep Jacky L.,Salvetti Elisa,Torriani SandraORCID

Abstract

Lactic acid bacteria (LAB) perform the process of malolactic fermentation (MLF) in wine. Availability of oxygen and nitrogen nutrients could influence LAB growth, malolactic activity, and other metabolic pathways, impacting the subsequent wine quality. The impact of these two factors has received limited investigation within LAB, especially on a transcriptome level. The aim of this study was to evaluate metabolic changes in the strain Lactiplantibacillus plantarum IWBT B063, growing in synthetic grape juice medium (GJM) under different oxygen exposure conditions, and with low availability of nitrogen-based nutrients. Next-generation sequencing was used to analyze expression across the transcriptome (RNA-seq), in combination with conventional microbiological and chemical analysis. L. plantarum consumed the malic acid present in all the conditions evaluated, with a slight delay and impaired growth for nitrogen limitation and for anaerobiosis. Comparison of L. plantarum transcriptome during growth in GJM with and without O2 revealed differential expression of 148 functionally annotated genes, which were mostly involved in carbohydrate metabolism, genetic information processing, and signaling and cellular processes. In particular, genes with a protective role against oxidative stress and genes related to amino acid metabolism were differentially expressed. This study confirms the suitability of L. plantarum IWBT B063 to carry out MLF in different environmental conditions due to its potential adaption to the stress conditions tested and provides a better understanding of the genetic background of an industrially relevant strain.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3