Enhancement of Triterpenoid Synthesis in Antrodia cinnamomea through Homologous Expression of the Key Synthetic Pathway Genes AcLSS and AcERG4

Author:

Zheng Siqi1,Fang Mingyue1,Huang Jiaxin1,Li Yanbin1,Mei Yuxia1ORCID

Affiliation:

1. National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

Abstract

Antrodia cinnamomea (AC), a rare fungus endemic to Taiwan, contains high levels of various secondary metabolites, notably triterpenoids, having useful medicinal and pharmacological properties. Techniques for increasing the production of AC triterpenoids (ACT) for medicinal purposes are a high research priority. We measured and compared the biomass and ACT content of AC mycelia under various liquid fermentation culture conditions. Relative gene expression levels of ten enzymes involved in the mevalonate (MVA) pathway and “subsequent group modification pathway” were determined, and correlation analysis was performed to evaluate the roles of these enzyme genes in ACT synthesis. Two representative genes encoding the enzymes lanosterol synthase (AcLSS) and sterol C-24 reductase (AcERG4), whose activity is closely associated with ACT content, were selected for homologous expression. AcLSS and AcERG4 were separately linked to plasmid pCT74, and transformed into prepared AC protoplasts to obtain two recombinant strains, termed RpLSS and RpERG4, by polyethylene glycol (PEG)-CaCl2-mediated protoplast transformation. Upregulated expression levels of AcLSS and AcERG4 (1.78- and 1.41-fold, respectively) were associated with significantly higher (1.82- and 1.37-fold, respectively) ACT content in the recombinant strains in comparison with the wild-type. Our findings provide a theoretical and practical basis for the enhancement of ACT production using homologous expression techniques.

Funder

National Natural Science Foundation of China

Program of Scientific and Technological Talents Service to Business of Hubei Province

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3