Screening l-Lysine-Overproducing Escherichia coli Using Artificial Rare Codons and a Rare Codon-Rich Marker

Author:

Liu Hui12,Yang Cuiping12,Yang Lu12,Wang Ruiming12,Li Piwu12,Du Bowen12,Li Nan12,Wang Junqing12

Affiliation:

1. State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan 250353, China

2. School of Biological Engineering, Qilu University of Technology, Jinan 250353, China

Abstract

l-Lysine, an essential amino acid for humans and mammals, is widely used in the food, feed, medicine, and cosmetics industries. In this study, a lysine over-producing Escherichia coli mutant was isolated using a fluorescence-based screen and an E. coli strain lacking five of the six L-lysine tRNA-UUU genes. Firstly, an l-lysine codon-rich protein was fused with a green fluorescent protein (all AAG codons were replaced with AAA), yielding a rare codon-rich screening marker positively correlated with l-lysine content. After association and room temperature plasma (ARTP) mutagenesis and induced fluorescent protein expression culture, mutant strains with strong fluorescence were sorted using flow cytometry. The fermentation performance of the high-yielding l-lysine strains were evaluated, which resulted in 16 of the 29 mutant strains showing increased L-lysine yields compared with those of the wild-type strains and a screening efficiency of up to 55.2%. Following a 48 h fermentation, the production of l-lysine (14.8 g/L) and biomass by E. coli QD01ΔtRNA L2 were 12.1 and 4.5% higher than those of the wild-type strain. The screening strategy for high-yielding strains based on the artificial rare cryptosystem established in this study will provide an efficient, accurate, and simple method for screening other amino-acid-producing microorganisms.

Funder

Focus on Research and Development Plan in Shandong Province

Taishan Scholar Foundation of Shandong Province

Innovation Fund for Small- and Medium-sized Technology Innovation Capacity Enhancement Project of Shandong Province

Key innovation Project of Qilu University of Technology

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3