Dark Fermentation in the Dark Biosphere: The Case of Citrobacter sp. T1.2D-12

Author:

Gallego-Rodríguez Violeta1,Martínez-Bonilla Adrián1,Rodríguez Nuria12,Amils Ricardo12ORCID

Affiliation:

1. Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain

2. Centro de Astrobiología (CAB), CSIC-INTA, 28850 Torrejón de Ardoz, Spain

Abstract

Microbial diversity that thrives in the deep subsurface remains largely unknown. In this work, we present the characterization of Citrobacter sp. T1.2D-1, isolated from a 63.6 m-deep core sample extracted from the deep subsurface of the Iberian Pyrite Belt (IPB). A genomic analysis was performed to identify genes that could be ecologically significant in the IPB. We identified all the genes that encoded the formate–hydrogen lyase and hydrogenase-2 complexes, related to hydrogen production, as well as those involved in glycerol fermentation. This is particularly relevant as some of the substrates and byproducts of this process are of industrial interest. Additionally, we conducted a phylogenomic study, which led us to conclude that our isolate was classified within the Citrobacter telavivensis species. Experimentally, we verified the strain’s ability to produce hydrogen from glucose and glycerol and, thus, of performing dark fermentation. Moreover, we assessed the activity of the nitrate and tetrathionate reductase complexes and the isolate’s ability to tolerate high concentrations of heavy metals, especially Zn. These results suggest that C. telavivensis T1.2D-1 can play a role in the carbon, hydrogen, iron, nitrogen, and sulfur cycles that occur in the deep subsurface of the IPB, making it a candidate worthy of further study for possible biotechnological applications.

Funder

Spanish Ministry of Science and Innovation

Spanish Ministry of Universities

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3