Effects of Trophic Modes on the Lipid Accumulation of Parachlorella kessleri TY

Author:

Gao Yifan1ORCID,Li Yuan1,Yang Yan2,Feng Jia3,Ji Li1,Xie Shulian3ORCID

Affiliation:

1. School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China

2. School of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China

3. School of Life Science, Shanxi University, Taiyuan 030006, China

Abstract

Microalgae are considered to have great potential as a source of biodiesel. Currently, algae culture has three different trophic modes, i.e., autotrophic, heterotrophic, and mixotrophic, but not all kinds of algae are suitable for heterotrophic and mixotrophic cultivation. In this study, Parachlorella kessleri TY, screened from the soil of Shanxi Province, was heterotrophically and mixotrophically treated with glucose as an organic carbon source, and the physiological and biochemical levels of its growth and lipid accumulation were measured. The results showed that the highest biomass and biomass productivity (1.53 g·L−1 and 218.57 mg·L−1d−1) were attained by P. kessleri TY under mixotrophic cultivation. In comparison, the lowest (0.55 g·L−1 and 78.57 mg·L−1d−1) were attained under heterotrophic culture. Furthermore, heterotrophic and mixotrophic conditions could accumulate more lipids (total lipid contents: 39.85% and 42.92%, respectively), especially the neutral lipids. Additionally, the contents of fatty acids suitable for use as biodiesel raw materials in both heterotrophic and mixotrophic cultures increased, especially the content of C18:1. Moreover, due to the lower biomass of heterotrophic cultivation compared with that from mixotrophic cultivation, the total lipid productivity of heterotrophic conditions decreased. In summary, the conditions of mixotrophic cultivation are more conducive to the accumulation of lipids in P. kessleri TY.

Funder

National Natural Science Foundation of China

Key Research and Development Project in Shanxi Province

Fundamental Research Program of Shanxi Province

Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi

Research Award Fund for Outstanding Doctoral Coming to Work in Shanxi

Doctoral Scientific Research Foundation for Taiyuan University of Science and Technology

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3