Enhancing Efficiency of Anaerobic Digestion by Optimization of Mixing Regimes Using Helical Ribbon Impeller

Author:

Singh ButaORCID,Kovács Kornél L.,Bagi Zoltán,Nyári József,Szepesi Gábor L.ORCID,Petrik Máté,Siménfalvi ZoltánORCID,Szamosi ZoltánORCID

Abstract

The appropriate mixing system and approach to effective management can provide favorable conditions for the highly sensitive microbial community, which can ensure process stability and efficiency in an anaerobic digester. In this study, the effect of mixing intensity on biogas production in a lab-scale anaerobic digester has been investigated experimentally and via modeling. Considering high mixing efficiency and unique feature of producing axial flow, helical ribbon (HR) impeller is used for mixing the slurry in this experiment under various conditions. Three parallel digesters were analyzed under identical operating conditions for comparative study and high accuracy. Effects of different mixing speeds (10, 30, and 67 rpm for 5 min h−1) on biogas production rate were determined in 5-L lab-scale digesters. The results demonstrated 15–18% higher biogas production at higher mixing speed (67 rpm) as compared to 10 rpm and 30 rpm and the results proved statistically significant (p < 0.05). Biogas production at 10, 30, and 67 rpm were 45.6, 48.6, and 52.5 L, respectively. Higher VFA concentrations (7.67 g L−1) were recorded at lower mixing intensity but there was no significant difference in pH and ammonia at different speeds whereas the better mixing efficiency at higher speeds was also the main reason for increase in biogas production. Furthermore, model simulation calculations revealed the reduction of dead zones and better homogeneous mixing at higher mixing speeds. Reduction of dead zones from 18% at 10 rpm to 2% at 67 rpm was observed, which can be the major factor in significant difference in biogas production rates at various mixing intensities. Optimization of digester and impeller geometry should be a prime focus to scale-up digesters and to optimize mixing in full-scale digesters.

Funder

the European Union and the Hungarian State

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Reference49 articles.

1. Biogas from Waste and Renewable Resources: An Introduction;Dieter Deublein,2011

2. Long-term biogas desulfurization under different microaerobic conditions in full-scale thermophilic digesters co-digesting high-solid sewage sludge

3. The Microbiology of Anaerobic Digesters;Gerardi,2003

4. State of the art on mixing in an anaerobic digester: A review

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3