Probiotic Feed Additives Mitigate Odor Emission in Cattle Farms through Microbial Community Changes

Author:

Park Min-Kyu123ORCID,Hwang Tae-Kyung4,Kim Wanro1ORCID,Jo YoungJae1,Park Yeong-Jun123,Kim Min-Chul123,Son HyunWoo13,Seo DaeWeon3,Shin Jae-Ho123ORCID

Affiliation:

1. Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea

2. KNU NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea

3. Microbalance Inc., Daegu 41566, Republic of Korea

4. Gunwi Agricultural Technology Center, Gunwi-gun, Daegu 43126, Republic of Korea

Abstract

Odor emissions from animal manure present a significant environmental challenge in livestock farming, impacting air quality and farm sustainability. Traditional methods, such as chemical additives and manure treatment, can be costly, labor-intensive, and less eco-friendly. Therefore, this study investigated the effectiveness of microbial feed additives in reducing these odors. Conducted over three months in 2022 on a Korean beef cattle farm with 20 cattle, the experiment involved feeding a mixture of four microbial strains—Bacillus subtilis KNU-11, Lactobacillus acidophilus KNU-02, Lactobacillus casei KNU-12, and Saccharomyces cerevisiae KNU-06. Manure samples were collected from an experimental group (n = 9) and a control group (n = 11), with microbial community changes assessed through 16S ribosomal RNA gene amplicon sequencing. The results demonstrated significant reductions in specific odorous compounds in the experimental group compared to the control group: ammonia decreased by 64.1%, dimethyl sulfide by 81.3%, butyric acid by 84.6%, and isovaleric acid by 49.8%. Additionally, there was a notable shift in the microbiome, with an increase in the relative abundance of Ruminococcaceae and Prevotellaceae microbes associated with fiver degradation and fermentation, while the control group had higher levels of Bacteroidota and Spirochaetota, which are linked to pathogenicity. This study demonstrates that probiotics effectively alter intestinal microbiota to enhance microorganisms associated with odor mitigation, offering a promising and more sustainable approach to reducing odor emissions in livestock farming.

Funder

Korea Basic Science Institute

Ministry of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3