Efficient Biosynthesis of Ectoine in Recombinant Escherichia coli by Biobrick Method

Author:

Naeem Muhammad1ORCID,Yuan Huiling12,Luo Suya1,Zhang Simei1,Wei Xinyue12,He Guangzheng1,Zhao Baohua1,Ju Jiansong12ORCID

Affiliation:

1. College of Life Science, Hebei Normal University, Shijiazhuang 050024, China

2. Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang 050024, China

Abstract

Ectoine is a compatible solute naturally produced in some halophilic bacteria as a protective agent for survival in salty environments. It has gained special interest as a therapeutic agent in the pharmaceutical and healthcare sectors for the treatment of different diseases. Ectoine mainly produced by bacterial milking, chemical, and fed-batch fermentation methods under a high-salt medium. Unfortunately, the ectoine yield through these methods is still too low to meet high industrial demand, causing salinity issues. The biobrick method was potentially utilized for efficient ectoine biosynthesis under a low-salt medium with different conditions in E. coli BL21(DE3) harboring the pET-22bNS-EctA-EctB-EctC plasmid. Firstly, three genes, L-2,4-diamino-butyric acid acetyltransferase (ectA), L-2,4-diaminobutyric acid transaminase (ectB), and ectoine synthase (ectC) from Bacillus pseudofirmus OF4, were precisely assembled and expressed into E. coli BL21(DE3). After optimizing the reaction conditions in a whole-cell catalytic reaction [50 mM of the sodium phosphate buffer (pH~7.5) containing 300 mM L-aspartic acid, 100 mM glycerol, 1/20 g/mL cell pellets], the amount of ectoine in the plasmid pET-22bNS-ALacBTacCTac reached the maximum level of 167.2 mg/mL/d (6.97 mg/mL/h). Moreover, Western blot analysis revealed that high expression levels of EctA and EctC had a significant effect on ectoine biosynthesis, indicating that both proteins might be the key enzymes in ectoine production. We conclude that a high amount of ectoine achieved through the biobrick method and efficiently used for different industrial applications.

Funder

Funds for Central Guiding Local Science and Technology Development

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3