Specific Organic Loading Rate Control for Improving Fermentative Hydrogen Production

Author:

Anzola-Rojas Mélida del Pilar1,Fuess Lucas Tadeu1,Zaiat Marcelo1ORCID

Affiliation:

1. Biological Processes Laboratory, São Carlos School of Engineering, University of São Paulo, 1100 João Dagnone Ave., Santa Angelina, São Carlos 13563-120, SP, Brazil

Abstract

Inhibiting homoacetogens is one of the main challenges in fermentative hydrogen production because these hydrogen consumers have similar growth features to hydrogen producers. Homoacetogens have been related to the excessive accumulation of biomass in fermentative reactors. Therefore, a suitable food/microorganism ratio has the potential to minimize the homoacetogenic activity. In this work, the specific organic loading rate (SOLR) was controlled in two fermentative fixed-bed up-flow reactors through scheduled biomass discharges. Reactors were differentiated by the bed arrangement, namely, packed and structured conformation. The SOLR decay along the time in both reactors was previously simulated according to the literature data. The volume and volatile suspended solids (VSS) concentration of discharges was estimated from the first discharge, and then additional discharges were planned. Biomass discharges removed 21% of the total biomass produced in the reactors, maintaining SOLR values of 3.0 ± 0.4 and 3.9 ± 0.5 g sucrose g−1 VSS d−1 in the packed-bed and structured-bed reactors, respectively. Such a control of the SOLR enabled continuous and stable hydrogen production at 2.2 ± 0.2 L H2 L−1 d−1 in the packed-bed reactor and 1.0 ± 0.3 L H2 L−1 d−1 in the structured-bed one. Controlling biomass was demonstrated to be a suitable strategy for keeping the continuous hydrogen production, although the fermentative activity was impaired in the structured-bed reactor. The homoacetogenic was partially inhibited, accounting for no more than 30% of the total acetic acid produced in the reactor. Overall, the high amount of attached biomass in the packed-bed reactor provided more robustness to the system, offsetting the periodic suspended biomass losses via the planned discharges. Better characterizing both the VSS composition (aiming to differentiate cells from polymeric substances) and the bed hydrodynamics could be useful to optimize the online SOLR control.

Funder

São Paulo Research Foundation

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil

Publisher

MDPI AG

Reference48 articles.

1. IPCC (2014). Climate Change 2014 Synthesis Report, IPCC.

2. IRENA (2022). Geopolitics of the Energy Transformation: The Hydrogen Factor, IRENA.

3. Hydrogen Production for Energy: An Overview;Dawood;Int. J. Hydrogen Energy,2020

4. How the Hydrogen Production from RES Could Change Energy and Fuel Markets: A Review of Recent Literature;Maggio;Int. J. Hydrogen Energy,2019

5. The Economics and the Environmental Benignity of Different Colors of Hydrogen;Ajanovic;Int. J. Hydrogen Energy,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3