Revolutionizing Renewable Resources: Cutting-Edge Trends and Future Prospects in the Valorization of Oligosaccharides

Author:

Chelliah Ramachandran123ORCID,Kim Nam Hyeon1,Park SeonJu4ORCID,Park Younseo1,Yeon Su-Jung13ORCID,Barathikannan Kaliyan135ORCID,Vijayalakshmi Selvakumar13,Oh Deog-Hwan13ORCID

Affiliation:

1. Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea

2. Saveetha School of Engineering, SIMATS University, Sriperumbudur 600124, India

3. Future F Biotech Co., Ltd., Chuncheon 24341, Republic of Korea

4. Metropolitan Seoul Center, Korea Basic Science Institute (KBSI), Seoul 03759, Republic of Korea

5. Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea

Abstract

Lignocellulosic wastes, primarily from agricultural by-products, are a renewable resource increasingly used in the sustainable production of oligosaccharides, significantly contributing to the growing bioeconomy. This innovative utilization of biological resources aligns with the global shift towards sustainable development, focusing on creating products such as food, feed, and bioenergy from renewable sources. Oligosaccharides, specialized carbohydrates, are synthesized either chemically or more eco-friendly, biologically. Biological synthesis often involves enzymes or whole-cell systems to transform lignocellulosic wastes into these valuable sugars. As functional food supplements, oligosaccharides play a crucial role in human and animal health. They serve as prebiotics, indigestible components that promote the proliferation of beneficial gut microbiota, especially within the colon. This positive impact on gut flora is essential for boosting the immune system and regulating physiological functions. Important prebiotics, including galactooligosaccharides (GOS), xylooligosaccharides (XOS), fructooligosaccharides (FOS), mannan-oligosaccharides (MOS), and isomaltooligosaccharides (IMOS), are produced through methods involving enzymes or the use of whole cells, with agricultural waste as substrates. Recent advancements focus on refining these biological processes for oligosaccharide synthesis using lignocellulosic substrates, emphasizing the principles of a circular bioeconomy, which promotes resource reuse and recycling. This review highlights the potential and challenges in the biological synthesis of oligosaccharides from renewable resources. It underscores the need for innovation in process optimization and commercialization strategies to fully exploit lignocellulosic wastes. This approach not only contributes to sustainable product development, but also opens new avenues for the profitable and environmentally friendly utilization of agricultural residues, marking a significant step forward in the bio-based industry.

Funder

fourth Brain Korea (BK) 21 Plus Project

Basic Science Research Program

Korean Government, Republic of Korea

Korea Basic Science Institute

Ministry of Education, Science and Technology, Republic of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3