Biotechnological Processing of Sugarcane Bagasse through Solid-State Fermentation with White Rot Fungi into Nutritionally Rich and Digestible Ruminant Feed

Author:

Khan Nazir Ahmad12ORCID,Khan Mussayyab2,Sufyan Abubakar3,Saeed Ashmal2,Sun Lin4ORCID,Wang Siran5ORCID,Nazar Mudasir5,Tan Zhiliang1,Liu Yong1,Tang Shaoxun16ORCID

Affiliation:

1. Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China

2. Department of Animal Nutrition, The University of Agriculture, Peshawar 25130, Pakistan

3. Department of Livestock and Poultry Production, Bahauddin Zakariya University, Multan 60800, Pakistan

4. Inner Mongolia Engineering Research Center of Development and Utilization of Microbial Research in Silage, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China

5. Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China

6. College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China

Abstract

Sugarcane (Saccharum officinarum) bagasse (SCB) is one of the most widely produced lignocellulosic biomasses and has great potential to be recycled for sustainable food production as ruminant animal feed. However, due to severe lignification, i.e., lignin-(hemi)-cellulose complexes, ruminants can only ferment a minor fraction of the polysaccharides trapped in such recalcitrant lignocellulosic biomasses. This study was therefore designed to systematically evaluate the improvement in nutritional value, the in vitro dry matter digestibility (IVDMD), and the rate and extent of in vitro total gas (IVGP) and methane (CH4) production during the 72 h in vitro ruminal fermentation of SCB, bioprocessed with Agaricus bisporus, Pleurotus djamor, Calocybe indica and Pleurotus ostreatus under solid-state fermentation (SSF) for 0, 21 and 56 days. The contents of neutral detergent fiber, lignin, hemicellulose and CH4 production (% of IVGP) decreased (p < 0.05), whereas crude protein (CP), IVDMD and total IVGP increased (p < 0.05) after the treatment of SCB for 21 and 56 days with all white-rot fungi (WRF) species. The greatest (p < 0.05) improvement in CP (104.1%), IVDMD (38.8%) and IVGP (49.24%) and the greatest (p < 0.05) reduction in lignin (49.3%) and CH4 (23.2%) fractions in total IVGP were recorded for SCB treated with C. indica for 56 days. Notably, C. indica degraded more than (p < 0.05) lignin and caused greater (p < 0.05) improvement in IVDMD than those recorded for other WRF species after 56 days. The increase in IVGP was strongly associated with lignin degradation (R2 = 0.72) and a decrease in the lignin-to-cellulose ratio (R2 = 0.95) during the bioprocessing of SCB. Our results demonstrated that treatment of SCB with (selective) lignin-degrading WRF can improve the nutritional value and digestibility of SCB, and C. indica presents excellent prospects for the rapid, selective and more extensive degradation of lignin and, as such, for the improvement in nutritional value and digestibility of SCB for ruminant nutrition.

Funder

Chinese Academy of Sciences President’s International Fellowship for Postdoctoral Studies

Strategic Priority Research Program of the Chinese Academy of Sciences

Rural Revitalization Project of Chinese Academy of Sciences

Higher Education Commission of Pakistan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3