Supplementing Proteolytic Enzymes Increased the In Vitro Nutrient Effective Degradability and Fermentation Characteristics of Pineapple Waste Silage

Author:

Nogoy Kim Margarette Corpuz12,Lee Jae Ik13,Yu Jia1,Sang Jung In4,Hong Hyoung Ki1,Ji Yoon Gwang1,Li Xiang Zi5,Choi Seong Ho1ORCID

Affiliation:

1. Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea

2. Department of Animal Science, College of Agriculture, Central Luzon State University, Science City of Munoz 3120, Nueva Ecija, Philippines

3. Korea Institute for Animal Products Quality Evaluation, Daejeon 30100, Republic of Korea

4. Seinbio Inc., Seoul 05770, Republic of Korea

5. Department of Animal Science, Yanbian University, 977 Gongyuan Road, Yanji 133002, China

Abstract

Pineapple waste silage (PAS) is an abundant agro-industrial by-product characterized by its high fiber content posing a high potential feed value as roughage for ruminants. Studies on its supplementation with proteolytic enzyme (PE) will help extend its utilization as an alternative nutritive feed source for cattle nutrition. Thus, this study aimed to determine the in vitro nutrient degradability and fermentation characteristics of fiber-rich but low-protein PAS supplemented with different levels of PE. Seven treatments were evaluated in this study: PAS without PE and PAS1 to PAS6, which corresponds to incremental levels of PAS supplementation as follows: 0.1%, 0.2%, 0.3%, 1%, 2%, and 4%. The nutrient disappearance, nutrient effective degradability, and fermentation characteristics such as total gas production, ammonia-nitrogen, and pH values were evaluated in vitro. PAS without added PE showed a comparably good nutritive value (dry matter: 94.30%, neutral detergent fiber: 63.66%, acid detergent fiber: 34.78%) to that of commonly used corn silage in South Korea. With the supplementation of PE in PAS, the PE increased the effective degradability of different nutrients such as dry matter (DM), neutral detergent fiber (NDF), acid detergent fiber (ADF), organic matter (OM), and crude protein (CP). The effect of PE supplementation on the degradation of nutrients was consistent with improvements in in vitro rumen fermentation characteristics. Supplementing PAS with PE increased the total gas production and decreased the pH values, which are characteristics of heightened fiber degradation and fermentation. The ammonia-N concentration of the in vitro-incubated PAS was moderated by the addition of PE, which is likely due to the decrease in pH or in vitro acidosis and has shown a synergistic protease activity effect on nutrient degradation. Overall, supplementing PAS with PE increased the effective degradability of DM, NDF, ADF, OM, and CP, with the most dramatic effects observed in PAS3 and PAS6 (0.3% and 4%, respectively).

Funder

Chungbuk National University

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3