Unveiling the Effect of NCgl0580 Gene Deletion on 5-Aminolevulinic Acid Biosynthesis in Corynebacterium glutamicum

Author:

Wu Jian1,Jiang Meiru1,Kong Shutian1,Hong Kunqiang1,Zhao Juntao1,Sun Xi1,Cui Zhenzhen1,Chen Tao1ORCID,Wang Zhiwen1

Affiliation:

1. Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

Abstract

5-Aminolevulinic acid (5-ALA) has recently received much attention for its wide applications in medicine and agriculture. In this study, we investigated the effect of NCgl0580 in Corynebacterium glutamicum on 5-ALA biosynthesis as well as its possible mechanism. It was found that the overexpression of NCgl0580 increased 5-ALA production by approximately 53.3%. Interestingly, the knockout of this gene led to an even more significant 2.49-fold increase in 5-ALA production. According to transcriptome analysis and functional validation of phenotype-related targets, the deletion of NCgl0580 brought about considerable changes in the transcript levels of genes involved in central carbon metabolism, leading to fluxes redistribution toward the 5-ALA precursor succinyl-CoA as well as ATP-binding cassette (ABC) transporters affecting 5-ALA biosynthesis. In particular, the positive effects of enhanced sugar transport (by overexpressing NCgl1445 and iolT1), glycolysis (by overexpressing pyk2), iron uptake (by overexpressing afuABC), and phosphate uptake (by overexpressing pstSCAB and ugpQ) on 5-ALA biosynthesis were demonstrated for the first time. Thus, the transcriptional mechanism underlying the effect of NCgl0580 deletion on 5-ALA biosynthesis was elucidated, providing new strategies to regulate the metabolic network of C. glutamicum to achieve a further increase in 5-ALA production.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3