Sulphate Uptake Plays a Major Role in the Production of Sulphur Dioxide by Yeast Cells during Oenological Fermentations

Author:

Granuzzo Sara1,Righetto Francesca1,Peggion Caterina1ORCID,Bosaro Matteo2,Frizzarin Martina2,Antoniali Paolo2,Sartori Geppo1ORCID,Lopreiato Raffaele1

Affiliation:

1. Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy

2. Italiana Biotecnologie S.r.l., 36054 Vicenza, Italy

Abstract

Sulphur dioxide (SO2) is mostly used as an antioxidant additive in winemaking, but excessive levels may be harmful to both wine quality and consumers health. During fermentation, yeast Saccharomyces cerevisiae contributes significantly to final SO2 levels, and low-producing strains become especially interesting for the wine industry. Recent evidence implicating the impairment of sulphate transport in the SO2 decrease prompted us to further investigate the sulphate/sulphite metabolic connection in multiple winery yeast strains. Here, we inactivated by CRISPR/Cas9 the high-affinity sulphate permeases (Sul1p and Sul2p) in four strains normally used in winemaking, selected by their different abilities to produce SO2. Mutant strains were then used to perform fermentation assays in different types of natural must, and the final levels of SO2 and other secondary metabolites, crucial for wine organoleptic properties, were further determined for all fermentation products. Overall, data demonstrated the double ΔSUL1/ΔSUL2 inactivation in winery strains significantly decreases the levels of SO2 produced by mutant cells, without however altering both yeast fermentative properties and the ability to release relevant metabolites. Since similar effects were observed in diverse must types for strains with different features, the data strongly support that sulphate assimilation is the determining factor in SO2 production during oenological fermentations.

Funder

University of Padova

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3