Kinetic Study of Anaerobic Digestion of Compost Leachate from Organic Fraction of Municipal Solid Waste

Author:

Limonti Carlo1ORCID,Curcio Giulia Maria1ORCID,Siciliano Alessio1ORCID,Le Pera Adolfo2,Demirer Goksel N.3ORCID

Affiliation:

1. Laboratory of Sanitary and Environmental Engineering, Department of Environmental Engineering, University of Calabria, 87036 Rende (CS), Italy

2. Calabra Maceri e Servizi SpA, 87036 Rende (CS), Italy

3. School of Engineering & Technology, Institute for Great Lakes Research, Central Michigan University, Mt. Plesant, MI 48859, USA

Abstract

The anaerobic digestion (AD) of compost leachate has been scarcely investigated and, to the best of our knowledge, no previous work has analyzed the kinetics of the process in completely stirred tank reactors (CSTR). To overcome this lack of knowledge, the present work aimed to deepen the study of the AD of compost leachate in CSTR and to identify the kinetics that can represent the process evolution under different operating conditions. In this regard, an experimental investigation was carried out on a laboratory anaerobic pilot plant that worked in semi-continuous mode under mesophilic conditions. After the start-up phase, the digester was fed with organic loading rates (OLR) between 4 and 30 gCOD/Ld. The chemical oxygen demand (COD) removal ranged between 80 and 85% for OLR values up to 20 gCOD/Ld and, then, it was observed as 54% at 30 gCOD/Ld. The deterioration of process performance was caused by an excessive generation of volatile fatty acids leading to a decrease of methane production yield from 0.32–0.36 LCH4/gCODremoved at 20 gCOD/Ld, to 0.23–0.26 LCH4/gCODremoved at 30 gCOD/Ld. Using kinetic analysis, the Monod model was shown to be quite accurate in modelling the trends of COD degradation rates for OLR values up to 20 gCOD/Ld. On the other hand, a better fit was achieved with the Haldane model at 30 gCOD/Ld. The conducted modelling allowed to identify the kinetic parameters for each model. The detected results could help in the management and design of the digesters for the treatment of compost leachate.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3