Affiliation:
1. Latvian State Institute of Wood Chemistry, 27 Dzerbenes Street, LV-1006 Riga, Latvia
Abstract
Lignocellulosic biomasses have a very important role as raw materials to produce biobased chemicals. However, a sustainable, efficient, and economically competitive way to convert lignocellulosic biomass into these chemicals has still not been achieved. This study is related to the selective separation and conversion of birch wood C5 carbohydrates into furfural during the H3PO4–NaH2PO4-catalyzed hydrothermal pretreatment simultaneously preserving cellulose in the lignocellulosic leftover for glucose production by the enzymatic hydrolysis. The ratio of H3PO4–NaH2PO4 in the catalyst solution was changed (3:0, 2:1, 1:1, and 1:2). Results show that around 64.1 to 75.9% of available C5 carbohydrates were converted into furfural. The results of birch wood lignocellulosic leftover chemical composition analysis show that cellulose losses during the pretreatment stage did not reach more than 10% of the initial amount. Based on the enzymatic hydrolysis screening experiments, a suitable catalyst for pretreatment was selected and an in-depth study was carried out. Enzymatic hydrolysis experiments were organized based on the three-factor central composite face-centered design. The variable parameters were treatment time (24–72 h), enzyme load (10–20 U/g cellulose), and substrate amount in reaction media (10–20%). At optimal conditions, 49.9 ± 0.5% of available cellulose in lignocellulosic leftover was converted into glucose.
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献