Preparation of Self-Releasing Carbon Biofilm Carrier Based on Corncob and Denitrification Properties

Author:

Wang Baoshan1ORCID,Liu Jie1,Li Pengcheng1,Chen Xiaojie1,Zhang Xu1,Wen Chengcheng2

Affiliation:

1. School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

2. Gansu Academy of Eco-Environmental Sciences, Lanzhou 730030, China

Abstract

Wastewater with a low carbon/nitrogen (C/N) ratio is widespread and difficult to treat. The addition of an external carbon source is an effective method for treating such wastewater. Therefore, we aimed to prepare a self-releasing carbon biofilm carrier using agricultural waste (corncobs), polyvinyl alcohol, and sponge iron in various ratios to provide a carbon source that would facilitate denitrification, providing an optimal environment for microorganisms. We found that the carbon release of the MAC biofilm carrier that accumulated over 60 d was 116.139 mg of chemical oxygen demand (COD)·g−1, whereas the accumulated total nitrogen release was approximately 0 mg·(g·d)−1. The NO3−-N removal rate after 24 h reached 98.1%, whereas the theoretical use rate of the carbon source (in terms of COD) was stable at 90.34%. In addition, the sum of the abundances of the denitrifying and cellulose-degrading bacteria was 49.89%. Furthermore, biofilm carriers are used as functional carriers that contribute to cellulose degradation, a process in which sponge iron produces Fe2+ to provide electron donors and shuttles for denitrifying bacteria and forms the iron cycle, thereby inducing an increase in microbial abundance; this increase then facilitates the microbial degradation of cellulose and synergistic denitrification through interspecific bacterial cooperation. This study provides a new and effective method for enhancing the denitrification of wastewater with low C/N ratios.

Funder

Industrial Support Program for Higher Education Institutions in Gansu Province

2022 Talent Innovation and Entrepreneurship Project in the city of Lanzhou

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3