Solid-State Fermentation as a Sustainable Tool for Extracting Phenolic Compounds from Cascalote Pods

Author:

López-Cárdenas Francisco12,Ochoa-Reyes Emilio2ORCID,Baeza-Jiménez Ramiro2ORCID,Tafolla-Arellano Julio C.1ORCID,Ascacio-Valdés Juan A.3ORCID,Buenrostro-Figueroa José J.2ORCID

Affiliation:

1. Laboratorio de Biotecnología y Biología Molecular, Departamento de Ciencias Básicas, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico

2. Laboratory of Biotechnology & Bioengineering, Research Center in Food and Development A.C., Delicias 33089, Mexico

3. Bioprocess & Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico

Abstract

Cascalote pods are an important source of phenolic compounds, mainly recovered using solvent extraction methods. To find a sustainable alternative to these methods, this study aimed to evaluate solid-state fermentation (SSF) in order to enhance the extractability of total phenolic compounds (TPC) with antioxidant activity (AA) from cascalote pods. Aspergillus niger GH1 was selected based on the amount of TPC released and AA measured (ABTS, DPPH, FRAP) in a short period of time. Moreover, moisture, temperature, inoculum size, and mineral composition were evaluated. The largest amount of TPC released was 124.17 mg/gdw (g of dry weight) after 12 h of culture, which significantly correlated with the AA (Pearson’s R = 0.94). Moisture and KH2PO4 concentration were the main influencing factors of TPC release. Treatment 6 (1 × 107 spores/gdw, 30 °C, 60% moisture, mineral composition (g/L): KH2PO4, 1.52; NaNO3, 7.65; and MgSO4, 1.52) was selected due to the highest values of both TPC and AA. SSF-assisted extraction allowed for an increase of 118% and 93% in TPC and AA values, respectively. Corilagin, lagerstannin, geraniin, and ellagic acid were the main phenolic compounds identified by RP-HPLC-ESI-MS in the cascalote extracts. The results obtained demonstrate the feasibility of SSF-assisted extraction as a biotechnological alternative for the recovery of important bioactive molecules from this underutilized material.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3