Validation of RSM Predicted Optimum Scaling-Up Factors for Generating Electricity in a DCMFC: MATLAB Design and Simulation Model

Author:

Shabangu Khaya Pearlman12ORCID,Mthembu Nhlanhla2,Chetty Manimagalay13,Bakare Babatunde Femi2

Affiliation:

1. Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Steve Campus, S3 L3, P.O. Box 1334, Durban 4000, South Africa

2. Environmental Pollution and Remediation Research Group, Department of Chemical Engineering, Faculty of Engineering, Mangosuthu University of Technology, P.O. Box 12363, Jacobs, Durban 4026, South Africa

3. Cape Peninsula University of Technology, Department of Chemical Engineering, Cape Peninsula University of Technology, Symphony Way, Belville, Cape Town 7535, South Africa

Abstract

In this present study, the potential application of DCMFC for the treatment of three different sourced industrial wastewater streams: biorefinery, dairy and mixed streams was investigated. Operating conditions were optimised using the Box Behnken design in response surface methodology (RSM) with three validation experimental runs. The effect of process variables, i.e., HRT (48 h), catholyte dose (0.1 gmol/L) and electrode surface area (three carbon rods argumentation-m2) on the production of electricity as voltage yield (mV), power density (mW/m2), current density (mA/m2), Columbic efficiency (%) CE and Gibbs free energy correlation with the electromotive force of the DCMFC system. Experimental results obtained were a positive response towards the predictive values according to the DoE numerical optimisation sequence. At numerical optimum MFC conditions stated above, validation experimental responses of voltage yield by biorefinery wastewater were 645.2 mV, mixed wastewater was 549 mV, and dairy wastewater was 358 mV maximum yields. The power densities and current densities were attained, for biorefinery, mixed wastewater and dairy wastewater sources respectively as; 62 mW/m2, 50 mW/m2 and 27.2 mW/m2, then current densities of 50 mA/m2, 44,008 mA/m2 and 18 mA/m2. The coulombic efficiencies of 0.34%, 0.75% and 0.22%, respectively, were achieved. The validation of predicted optimum operating conditions was successfully attained, especially through the biorefinery wastewater organic substrate. This article articulates that it is highly imperative to choose the most suitable wastewater source as the viable electron donor towards scaling up and maximising the efficiency of generating electricity in the double chamber microbial fuel cell (DCMFC). Moreover, the findings of the current study demonstrate that the DCMFC can be further upscaled through a series connection in a fed-batch mode of operation using a well-designed and simulated process control system that has been computationally designed and modelled using first order MFC model bioenergy generating models MATLAB Simulink and Simscape electrical software. These findings of the simulations were successful and illustrated that an MFC power output can be successfully stepped to be a viable bio-electrochemical technology for both industrial wastewater (IWW) treatment and simultaneous sustainable power generation.

Funder

Mangosuthu University of Technology

Durban University of Technology

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3