Joint Multi-Optimization of an Extremophilic Microbial Bioanode for Mitigation of Mixed Hazardous Azo Dyes in Textile Synthetic Wastewater

Author:

Saadaoui Sirine123,Erable Benjamin3ORCID,Etchevery Luc3,Cherif Ameur1,Chouchane Habib1ORCID

Affiliation:

1. ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, University of Manouba, Ariana 2020, Tunisia

2. Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 1068, Tunisia

3. Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France

Abstract

Bioelectrochemical systems (BESs), rather than physicochemical processes, are used for wastewater remediation, electricity production, and zero carbon dioxide emission. Textile effluents contain organic and inorganic compounds that can fuel BESs. The main goal of this study was to understand the interplay between the anode material, its surface area, the potential applied to the working electrode (WE), and the concentration of the co-substrate, and how these factors lead to the formation of highly efficient thermohalophilic bioanodes (THB) retrieved from Chott El Djerid (SCD) hypersaline sediment for the treatment of synthetic textile wastewater. To this end, twenty-seven bioanode formation experiments were designed using a Box-Behnken matrix and response surface methodology to understand concomitant interactions. All experiments were conducted in electrochemical reactors of final volume 750 mL inoculated with 80% of enrichment medium containing three azo dyes at a concentration of 300 ppm and 20% of biocatalyst microbial SCD source, at 45 °C. The optimal levels were predicted using NemrodW software as carbon felt (CF) anode material, 6 cm2 anode surface, 7 g/L glucose concentration, and −0.1 V applied potential. These theoretical results were experimentally validated, using maximum current output of 5.23 ± 0.30 A/m2, decolorization rate of 100%, and a chemical oxygen demand (COD) removal rate of 96 ± 1%. Illumina Miseq results revealed that bacterial community harbored the bioanode was dominated at phylum level by Firmicutes (67.1%). At the species level, the biofilm was mainly colonized by Orenia metallireducens species (59.5%). Obtained findings show a promising application of THB in the degradation of recalcitrant molecules as well as for the energy recovery.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3