Affiliation:
1. Department of Chemical Engineering, Faculty of Chemistry, University of Murcia (UMU), Campus de Espinardo, E-30100 Murcia, Spain
2. Civil, Maritime & Environmental Engineering Department, University of Southampton, Bolderwood Campus, Southampton SO16 7QF, UK
Abstract
The implementation of a microbial fuel cell for wastewater treatment and bioenergy production requires a cost reduction, especially when it comes to the ion exchange membrane part and the catalysts needed for this purpose. Ionic liquids in their immobilized phase in proton exchange membranes and non-noble catalysts, as alternatives to conventional systems, have been intensively investigated in recent years. In the present study, a new microbial fuel cell technology, based on an ionic liquid membrane assembly for CoCu mixed oxide catalysts, is proposed to treat animal slurry. The new low-cost membrane–cathode system is prepared in one single step, thus simplifying the manufacturing process of a membrane–cathode system. The novel MFCs based on the new low-cost membrane–cathode system achieved up to 51% of the power reached when platinum was used as a catalyst. Furthermore, the removal of organic matter in suspension after 12 days was higher than that achieved with a conventional system based on the use of platinum catalysts. Moreover, struvite, a precipitate consisting of ammonium, magnesium, and phosphate, which could be used as a fertilizer, was recovered using this membrane–cathode system.
Funder
Ministry of Science, Innovation, and Universities
Seneca Foundation Science and Technology Agency of the Region of Murcia
Adrián Hernández-Fernández
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献