Abstract
Acrylamide, a II A carcinogen, widely exists in fried and baked foods. L-asparaginase can inhibit acrylamide formation in foods, and enzymatic stability is the key to its application. In this study, the Escherichia coli L-asparaginase (ECA) stable variant, D60W/L211R/L310R, was obtained with molecular dynamics (MD) simulation, saturation mutation, and combinatorial mutation, the half-life of which increased to 110 min from 60 min at 50 °C. Furthermore, the working temperature (maintaining the activity above 80%) of mutation expanded from 31 °C–43 °C to 35 °C–55 °C, and the relative activity of mutation increased to 82% from 65% at a pH range of 6–10. On treating 60 U/mL and 100 U/g flour L-asparaginase stable mutant (D60W/L211R/L310R) under uncontrolled temperature and pH, the acrylamide content of potato chips and bread was reduced by 66.9% and 51.7%, which was 27% and 49.9% higher than that of the wild type, respectively. These results demonstrated that the mutation could be of great potential to reduce food acrylamide formation in practical applications.
Funder
the Science and Technology Innovation Team Project of Xinjiang Production and Construction Corps
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献