Agarase, Amylase and Xylanase from Halomonas meridiana: A Study on Optimization of Coproduction for Biomass Saccharification

Author:

Veerakumar SneehaORCID,Manian RameshpathyORCID

Abstract

Coproduction of multienzymes from single potential microbe has captivated contemplation in industries. Bacterial strain, Halomonas meridiana VITSVRP14, isolated from seaweed was labored to produce amylase, agarase and xylanase conjointly using submerged fermentation. The optimum production conditions clinched by classical optimization were: pH 8; 1.5% inoculum; 24 h incubation, 40 °C; 8% NaCl (sodium chloride); 1% lactose and NaNO3 (sodium nitrate). The preponderant variables (pH, temperature, lactose) and their interaction effect on enzyme production were studied by Plackett-Burman design and Response Surface Methodology (RSM). There were 3.29, 1.81 and 2.08 fold increase in enzyme activity with respect to agarase, amylase and xylanase after optimization against basal medium. After 24 h of enzymatic treatment, the saccharification rates of the coproduced enzyme mixture were 38.96% on rice bran, 49.85% on wheat bran, 61.2% on cassava bagasse and 57.82% on corn cob. Thus, the coproduced enzyme mixture from a bacterium with halotolerance is plausible in pretreated lignocellulose degradation. The ability of this single microbe Halomonas meridiana VITSVRP14, in coproducing agarase, amylase and xylanase give the nod for its application in biomass saccharification by subsiding cost, energy and time involved in the process.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3