Evaluation of Three Marine Algae on Degradability, In Vitro Gas Production, and CH4 and CO2 Emissions by Ruminants

Author:

Lee-Rangel Héctor AarónORCID,Roque-Jiménez José AlejandroORCID,Cifuentes-López Rubén Oswaldo,Álvarez-Fuentes Gregorio,Cruz-Gómez Adriana De la,Martínez-García José Antonio,Arévalo-Villalobos Jaime Iván,Chay-Canul Alfonso JuventinoORCID

Abstract

Livestock production systems are responsible for producing ~18% of the total anthropogenic greenhouse gas (GHG) emissions. Numerous alternatives, such as feed additives or supplements, have been proposed to meet these challenges. Marine algae have been proposed for gas reduction in ruminants; nevertheless, there are still very few experimental reports. Thus, the objective of the current study was to identify the volatile organic compounds (VOCs) in three marine algae—Kelp (Macrocystis pyrifera), Ulva (Ulva spp.), and Silk (Mazzaella spp.)—and to test their in vitro ruminal fermentation characteristics, gas profiles, and ability to mitigate biogas production. The evaluation of the VOCs in marine algae was performed using a flash gas chromatography electronic nose (FGC-E-Nose). The in vitro study was elaborated through in vitro incubation and gas production. The data obtained were analyzed using a completely randomized design. In total, forty-three volatile compounds were identified for Kelp algae, thirty-eight were identified for Ulva algae, and thirty-six were identified for Silk algae; the compounds were from different chemical families and included aromas, alcohols, aldehydes, phenolics, carboxylic acids, esters, and nutraceutical properties. Dry matter degradability was significantly (p < 0.05) affected by the algae type. The cumulative ruminal gas production was different (p < 0.05) between treatments. Kelp algae presented a major (V; p < 0.05) volume of gas produced compared to the other algae. Lag time (l; p < 0.05) was increased by Kelp alga; however, there were no differences (p>0.05) between the Silk and Ulva algae. The gas production rate was higher (s; p < 0.05) for Silk algae compared to the others. Ulva and Silk algae demonstrated a significant (p < 0.05) decrease in carbon dioxide emissions. Nevertheless, Kelp algae reduced the proportional methane (CH4) production (p < 0.05) after 48 h of incubation, with the lowest emission rate of 47.73%. In conclusion, algae have numerous bio compounds that provide some properties for use in ruminant diets as additives to reduce methane and carbon dioxide emissions.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3