Effect of Metschnikowia pulcherrima on Saccharomyces cerevisiae PDH By-Pass in MixedFermentation with Varied Sugar Concentrations of Synthetic Grape Juice and Inoculation Ratios

Author:

Lin Xueqing,Tang Xiaohong,Han Xiaomei,He Xi,Han Ning,Ding Yan,Sun Yuxia

Abstract

The effects of Metschnikowia pulcherrima and high glucose osmolality on S. cerevisiae pyruvate dehydrogenase pathway (PDH) by-pass were examined by varying the starting sugar concentration of synthetic grape juice and the inoculation ratio of S. cerevisiae to M. pulcherrima. The findings revealed that M. pulcherrima and osmolarity impacted S. cerevisiae’s PDH by-pass. The inoculation concentration of M. pulcherrima significantly affected pyruvate decarboxylase (PDC) activity and acs2 expression when the initial sugar concentration was 200 g L−1 and 290 g L−1. The osmolarity caused by the initial sugar (380 g L−1) significantly influenced the enzymatic activity of S. cerevisiae, which decreased PDC and acetaldehyde dehydrogenase (ALD) activities while increasing Acetyl-CoA synthetase (ACS) activity. The reduction in acetic acid in the wine was caused by M. pulcherrima altering the initial sugar concentration faced by S. cerevisiae, which in turn affected enzymatic activity. The alteration of enzyme activity and accumulation of primary metabolites revealed why mixed fermentation could reduce the acetic acid content in wine by altering the enzymatic activity and affecting the expression of several key genes. The M. pulcherrima inoculation levels had no significant effect on the acetic acid and glycerol concentration in the same fermentation medium.

Funder

Major Project of Science and Technology of Shandong Provine

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Reference50 articles.

1. Study of Saccharomyces cerevisiae Wine Strains for Breeding Through Fermentation Efficiency and Tetrad Analysis

2. Harnessing yeast metabolism of aromatic amino acids for fermented beverage bioflavouring and bioproduction

3. Impact of Yeast Strain on the Production of Acetic Acid, Glycerol, and the Sensory Attributes of Ice wine;Daniel;Am. J. Enol. Vitic.,2004

4. Alcohols and Other Volatile Compounds;Ribéreau,2001

5. Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3