Comparison of Trichoderma longibrachiatum Xyloglucanase Production Using Tamarind (Tamarindus indica) and Jatoba (Hymenaea courbaril) Seeds: Factorial Design and Immobilization on Ionic Supports

Author:

Contato Alex GraçaORCID,Vici Ana Claudia,Pinheiro Vanessa Elisa,Oliveira Tássio Brito deORCID,Freitas Emanuelle Neiverth de,Aranha Guilherme Mauro,Valvassora Junior Almir Luiz Aparecido,Rechia Carem Gledes Vargas,Buckeridge Marcos Silveira,Polizeli Maria de Lourdes Teixeira de MoraesORCID

Abstract

Xyloglucan (XG) is the predominant hemicellulose in the primary cell wall of superior plants. It has a fundamental role in controlling the stretching and expansion of the plant cell wall. There are five types of enzymes known to cleave the linear chain of xyloglucan, and the most well-known is xyloglucanase (XEG). The immobilization process can be used to solve problems related to stability, besides the economic benefits brought by the possibility of its repeated use and recovery. Therefore, this study aims at the optimization of the xyloglucanase production of Trichoderma longibrachiatum using a central composite rotatable design (CCRD) with tamarind and jatoba seeds as carbon sources, as well as XEG immobilization on ionic supports, such as MANAE (monoamine-N-aminoethyl), DEAE (diethylaminoethyl)-cellulose, CM (carboxymethyl)-cellulose, and PEI (polyethyleneimine). High concentrations of carbon sources (1.705%), at a temperature of 30 °C and under agitation for 72 h, were the most favorable conditions for the XEG activity from T. longibrachiatum with respect to both carbon sources. However, the tamarind seeds showed 23.5% higher activity compared to the jatoba seeds. Therefore, this carbon source was chosen to continue the experiments. The scaling up from Erlenmeyer flasks to the bioreactor increased the XEG activity 1.27-fold (1.040 ± 0.088 U/mL). Regarding the biochemical characterization of the crude extract, the optimal temperature range was 50–55 °C, and the optimal pH was 5.0. Regarding the stabilities with respect to pH and temperature, XEG was not stable for prolonged periods, which was crucial to immobilizing it on ionic resins. XEG showed the best immobilization efficiency on CM-cellulose and DEAE-cellulose, with activities of 1.16 and 0.89 U/g of the derivative (enzyme plus support), respectively. This study describes, for the first time in the literature, the immobilization of a fungal xyloglucanase using these supports.

Funder

São Paulo Research Foundation

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3