Author:
Krull Susan,Brock Silvia,Prüße Ulf,Kuenz Anja
Abstract
Lactic acid is a building block for polylactic acid, which is one of the most promising polymers based on renewable resources and is used mainly in packaging industry. This bio-based polymer is biodegradable and provides an ecological and economical alternative to petrochemical plastics. The largest cost blocks of biotechnological lactic acid production, accounting for up to 38% of the total costs, are substrate and nutrient sources, such as peptone, meat, and yeast extract. Based on a systematic analysis of nutritional requirements, the substitution of yeast extract by low-cost protein-rich agricultural hydrolysates was estimated for the production of l-lactic acid with Lactobacillus casei. Cultivations in 24-well microtiter plates enabled analysis of nutrient requirements and the usage of various hydrolysates with a high parallel throughput and repeated sampling. Rapeseed meal (RM) and distillers’ dried grains with solubles (DDGS) were tested as low-cost protein-rich agricultural residues. By using chemically or enzymatically hydrolyzed rapeseed meal or DDGS, 70% of the nutrient sources was replaced in the fermentation process at identical productivity and product yields. All in all, the total costs of l-lactic acid production with Lactobacillus casei could potentially be reduced by up to 23%.
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献