Impact of Media Heat Treatment on Cell Morphology and Stability of L. acidophilus, L. johnsonii and L. delbrueckii subsp. delbrueckii during Fermentation and Processing

Author:

Ludszuweit MarieORCID,Schmacht MaximilianORCID,Keil Claudia,Haase HajoORCID,Senz MartinORCID

Abstract

Manufacturers of starter cultures and probiotics aim to provide preparations with the highest possible amount of living cells and assurance of long-term storage stability. Thereby the industrial economy and thus an efficient outcome of the processes is of utmost importance. Earlier research has shown that the sterilization procedure of the microbial culture medium tremendously impacts growth performance of heating product-sensitive Lactobacillus strains. Thus, three different strains, i.e., L. acidophilus NCFM, L. johnsonii La-2801 and L. delbrueckii subsp. delbrueckii La-0704, were investigated for the influence of media heat pretreatment on cell morphology and stability during fermentation and further freeze drying and storage. The data indicate a relationship between the heating time of the culture medium, which is associated with an increase in browning reactions, and the cultural characteristics of the three strains. The resulting characteristic cell sizes of the cultures could be a major reason for the different stability properties during processing and storage that were observed. Besides the obvious relevance of the results for the production of starter cultures and probiotics, the pleomorphic phenomenon described here could also be a subject for other biotechnological processes, where heat-mediated media conversions, and thereby related cellular effects, could be a topic. Future studies have to show if further functional properties are influenced by the cell morphology and which cellular mechanisms lead to the observed pleomorphism.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3