Effects of the Starch Molecular Structures in Barley Malts and Rice Adjuncts on Brewing Performance

Author:

Yu Wenwen,Quek Wei,Li Cheng,Gilbert Robert,Fox GlenORCID

Abstract

Background: Achieving optimal fermentation is challenging when the variation within malt starch structure and enzyme activities are not part of the standard malting specifications. This study explores how the variation of starch and starch amylolytic enzymes in both malts and rice adjuncts affect the mashing and the subsequent yeast fermentation in the laboratory-scale production of beer. Results: The addition of rice adjuncts significantly increased the maltose content whilst reducing the glucose content during mashing. The maltotriose content, released during mashing, was significantly negatively correlated with the total amylose content (r = −0.64, p < 0.05), and significantly negatively correlated with the number of amylopectin longer chains (degree of polymerization 37–100) (r = −0.75, p < 0.01). During fermentation, while the content of maltotriose significantly and positively correlated with both the rate and amount of ethanol production (r = 0.70, p < 0.05; r = 0.70, p < 0.05, respectively), the content of soluble nitrogen in the wort was significantly and positively correlated with both the rate and the amount of ethanol production (r = 0.63, p< 0.05; r = 0.62, p < 0.05, respectively). The amount of amylopectin with longer chains was; however, significantly negatively correlated with the ethanol production (r = −0.06, p < 0.05). Small variations among the ethanol concentration and the rate of ethanol production during fermentation were found with the addition of different rice varieties. Conclusions: The effects of the rice adjuncts on the performance of fermentation depends on the properties of the malt, including the protein modification and malt enzyme activities. This study provides data to improve standard malt specifications in order for brewers to acquire more efficient fermentation, and includes useful molecular structural characterisation.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3