Continuous Fermentation by Lactobacillus bulgaricus T15 Cells Immobilized in Cross-Linked F127 Hydrogels to Produce ᴅ-Lactic Acid

Author:

Guo Yongxin,Wang GangORCID,Chen Huan,Zhang Sitong,Li Yanli,Guo Mingzhu,Liu Juan,Chen Guang

Abstract

Lignocellulose biorefinery via continuous cell-recycle fermentation has long been recognized as a promising alternative technique for producing chemicals. ᴅ-lactic acid (D-LA) production by fermentation of corn stover by Lactobacillus bulgaricus was proven to be feasible by a previous study. However, the phenolic compounds and the high glucose content in this substrate may inhibit cell growth. The immobilization of cells in polymer hydrogels can protect them from toxic compounds in the medium and improve fermentation efficiency. Here, we studied the production of D-LA by L. bulgaricus cells immobilized in cross-linkable F127 bis-polyurethane methacrylate (F127-BUM/T15). The Hencky stress and Hencky strain of F127-BUM/T15 was 159.11 KPa and 0.646 respectively. When immobilized and free-living cells were cultured in media containing 5-hydroxymethylfurfural, vanillin, or high glucose concentrations, the immobilized cells were more tolerant, produced higher D-LA yields, and had higher sugar-to-acid conversion ratios. After 100 days of fermentation, the total D-LA production via immobilized cells was 1982.97 ± 1.81 g with a yield of 2.68 ± 0.48 g/L h, which was higher than that of free cells (0.625 ± 0.28 g/L h). This study demonstrated that F127-BUM/T15 has excellent potential for application in the biorefinery industry.

Funder

Key R&D plan of Jilin Province

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combined in-situ immobilization system of Chlorella sp. in photobioreactor;Case Studies in Chemical and Environmental Engineering;2023-12

2. Lactic Acid Production Using Microbial Bioreactors;Microbial Bioreactors for Industrial Molecules;2023-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3