The Impact of Varying Levels of Laurus nobilis Leaves as a Sustainable Feed Additive on Ruminal Fermentation: In Vitro Gas Production, Methane and Carbon Dioxide Emissions, and Ruminal Degradability of a Conventional Diet for Ruminants

Author:

Kholif Ahmed E.12ORCID

Affiliation:

1. Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA

2. Dairy Science Department, National Research Centre, 33 Bohouth St. Dokki, Giza 12622, Egypt

Abstract

The experiment aimed to evaluate the effects of varying levels of Laurus nobilis leaves [0% (control), 0.5%, 1%, 1.5%, and 2%] on the in vitro ruminal fermentation of a ruminant diet consisting of a 50% concentrate mixture, 40% berseem hay (Trifolium alexandrinum), and 10% rice straw (Oryza sativa). The in vitro incubation lasted 48 h, during which gas production (GP), methane (CH4), carbon dioxide (CO2), total and individual short-chain fatty acids (SCFA), and nutrient degradability were measured. The experiment utilized a randomized block design and consisted of two incubation runs. Gas chromatography analysis revealed that 1,8-cineole (81%) was the primary volatile compound in the L. nobilis leaves. The 0.5% inclusion level exhibited the highest (linear, p = 0.006) asymptotic GP and lowest lag of GP (linear, p = 0.002), while the 2% inclusion level had the highest lag of GP. The 2% inclusion level significantly lowered CH4 (linear, p = 0.003) compared to the control, and all levels of the leaves linearly decreased in the proportional CH4 production (p = 0.001), with the lowest value at the 0.5% inclusion level. The highest asymptotic CO2 production was observed with the 0.5% inclusion level (linear, p = 0.002), while the 0.5%, 1%, and 1.5% inclusion levels significantly increased (quadratic, p = 0.006) the proportion of CO2 compared to the control. The 0.5% inclusion level showed the highest (p < 0.001) degradable DM and fiber fractions compared to the control, whereas the 2% level decreased them. The 0.5% inclusion level resulted in the highest (p < 0.01) production of total SCFA, acetate, and propionate. Additionally, the 0.5% inclusion level demonstrated the highest (p < 0.05) metabolizable energy and microbial crude protein, while the 2% level reduced these measures compared to the control. It is concluded that L. nobilis leaves can be included at 0.5% of the ruminant diet (e.g., sheep) to improve ruminal fermentation and reduce CH4 production.

Publisher

MDPI AG

Reference60 articles.

1. Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., and Tempio, G. (2013). Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities, Food and Agriculture Organization of the United Nations (FAO).

2. Johannisson, J. (2023). Prospective Environmental Assessment of Technologies for Mitigating Methane Emissions. [Ph.D. Thesis, Universität Ulm].

3. Prediction of Enteric Methane Production, Yield, and Intensity in Dairy Cattle Using an Intercontinental Database;Niu;Glob. Chang. Biol.,2018

4. Opio, C., Gerber, P., Mottet, A., Falcucci, A., Tempio, G., MacLeod, M., Vellinga, T., Henderson, B., and Steinfeld, H. (2013). Greenhouse Gas Emissions from Ruminant Supply Chains—A Global Life Cycle Assessment, Food and Agriculture Organization of the United Nations (FAO).

5. In Vitro Fermentation and Production of Methane and Carbon Dioxide from Rations Containing Moringa oleifera Leave Silage as a Replacement of Soybean Meal: In Vitro Assessment;Morsy;Environ. Sci. Pollut. Res.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3