Determination of Variable Humidity Profile for Lactic Acid Maximization in Fungal Solid-State Fermentation
-
Published:2024-08-07
Issue:8
Volume:10
Page:406
-
ISSN:2311-5637
-
Container-title:Fermentation
-
language:en
-
Short-container-title:Fermentation
Author:
Groff María Carla123, Noriega Sandra Edith4, Díaz Meglioli María Eugenia3, Rodríguez Laura1ORCID, Kuchen Benjamín12ORCID, Scaglia Gustavo23ORCID
Affiliation:
1. Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan (IBT-FI-UNSJ), San Juan 5400, Argentina 2. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina 3. Instituto de Ingeniería Química, Facultad de Ingeniería, Universidad Nacional de San Juan (IIQ-FI-UNSJ), San Juan 5400, Argentina 4. Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo (IICQ-FCQT-UCCuyo), San Juan 5400, Argentina
Abstract
Solid-state fermentation (SSF) is the bioprocess where microorganisms are cultivated in the absence of free water under controlled conditions. Lactic acid can be produced by Rhizopus oryzae SSF of grape stalks. During the microorganism’s growth, the temperature and water content of the solid bed fluctuate, leading to areas of either dry or excessive moisture in the solid substrate. Therefore, it is crucial to control the water supply to the matrix. In this work, we obtain lactic acid through SSF of grape stalks using Rhizopus oryzae NCIM 1299. The SSF was conducted at a fixed temperature of 35 °C, with five constant relative humidity (RH) levels: 50, 57, 65, 72, and 80%RH. Mathematical models, including the Logistic and First-Order Plus Dead-Time models for fungal biomass growth and the Luedeking and Piret with Delay Time model for lactic acid production, were adjusted to kinetic curves. Growth kinetic parameters (Xmax, μmax, Tp, T0, Yp/x, and td) were determined for all conditions. These kinetic parameters were then correlated with relative humidity using a second-degree polynomial relationship. We observed a decrease in Xmax with an increasing %RH, while the value of Yp/x increased at a higher %RH. Finally, the optimal variable relative humidity profile was obtained by applying the dynamic optimization technique, resulting in a 16.63% increase in lactic acid production.
Funder
Universidad Católica de Cuyo Secretaría de Ciencia, Tecnología e Innovación
Reference45 articles.
1. Challenges and Opportunities in Lactic Acid Bioprocess Design—From Economic to Production Aspects;Komesu;Biochem. Eng. J.,2018 2. Agricultural Waste Concept, Generation, Utilization and Management;Obi;Niger. J. Technol.,2016 3. Grape Stalk Valorization for Fermentation Purposes;Atatoprak;Food Chem. Mol. Sci.,2022 4. Serra, M., Casas, A., Teixeira, J.A., and Barros, A.N. (2023). Revealing the Beauty Potential of Grape Stems: Harnessing Phenolic Compounds for Cosmetics. Int. J. Mol. Sci., 24. 5. D’ambrosio, S., Zaccariello, L., Sadiq, S., D’Albore, M., Battipaglia, G., D’Agostino, M., Battaglia, D., Schiraldi, C., and Cimini, D. (2023). Grape Stalk Valorization: An Efficient Re-Use of Lignocellulosic Biomass through Hydrolysis and Fermentation to Produce Lactic Acid from Lactobacillus RHamnosus IMC501. Fermentation, 9.
|
|