Production of Polyclonal Antibodies and Development of Competitive ELISA for Quantification of the Lantibiotic Paenibacillin

Author:

Abdelhamid Ahmed G.12ORCID,Wick Macdonald3,Yousef Ahmed E.14ORCID

Affiliation:

1. Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA

2. Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt

3. Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA

4. Department of Microbiology, The Ohio State University, 105 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, USA

Abstract

The discovery and biotechnological application of new antimicrobial peptides are impeded by a lack of sensitive methods for peptide quantification. Paenibacillin is an emerging antimicrobial lantibiotic that was discovered in Paenibacillus polymyxa OSY-DF ATCC PTA-7852, isolated from the fermented vegetable Kimchee. This lantibiotic has potency against many foodborne pathogenic and spoilage bacteria. To advance the research and application of paenibacillin, a rapid, specific, and sensitive detection and quantification immunoassay was developed. After anti-paenibacillin polyclonal antibodies (pAbs) were generated and purified, a competitive enzyme-linked immunosorbent assay (cELISA) was developed and optimized for paenibacillin quantification. The dynamic range of the cELISA was determined by using a three-parameter nonlinear regression model, achieving a correlation (R2) value of 0.95. The cELISA displayed high sensitivity, with the ability to detect paenibacillin at levels as low as 15.6 ng/mL, which is significantly lower than the limit of detection of the conventional antimicrobial assay (20 µg/mL paenibacillin). The cELISA successfully differentiated paenibacillin concentrations in cell-free crude supernatants of P. polymyxa wild type and its mutant strain when grown at 30 °C and 37 °C; higher paenibacillin levels were found in the mutant (0.248–0.276 µg/mL) than in the wild type (0.122–0.212 µg/mL) culture. These findings were validated by the transcriptional analysis of 11 paenibacillin biosynthetic genes, which were significantly upregulated (≥2-fold increase) in the mutant compared with the wild strain. Additionally, the cELISA exhibited high sensitivity by recovery of paenibacillin titers spiked at 2.5 and 10 µg/mL in de Man, Rogosa, and Sharpe (MRS) broth and diluted skim milk. These results suggest that the anti-paenibacillin pAbs and the developed cELISA could be valuable in quantifying paenibacillin in complex matrices and in aiding the discovery of paenibacillin-producing natural microbiota.

Funder

Virginia Hutchinson Bazler

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3