Source-Separated Industrial Wastewater Is a Candidate for Biogas Production through Anaerobic Digestion

Author:

Elliott Jake A. K.12,Krohn Christian12ORCID,Ball Andrew S.12ORCID

Affiliation:

1. ARC Training Centre for the Transformation of Australia’s Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia

2. School of Science, RMIT University, Bundoora, VIC 3083, Australia

Abstract

Anaerobic digestion is a potential treatment for industrial wastewater that provides valuable end-products, including renewable energy (biogas). However, waste streams may be too variable, too dilute at high volumes, or missing key components for stable digestion; all factors that increase costs and operational difficulty, making optimisation crucial. Anaerobic digestion may benefit from process intensification, particularly the novel combination of high-strength source-separated wastewater to minimise volume, together with the use of biosolids biochar as a chemical and microbial stabiliser. This study investigates the stability, yield, and microbial community dynamics of the anaerobic digestion of source-separated industrial wastewater from a food manufacturer and a logistics company, using biosolids biochar as an additive, focusing on gas and volatile fatty acid (VFA) production, process stability, and the microbial community using bench-scale semi-continuous reactors at 30- and 45-day hydraulic retention time (HRT). While gas yields were lower than expected, stability was possible at high HRT. Methane production reached 0.24 and 0.43 L day−1 per litre reactor working volume at 30- and 45-day HRT, respectively, despite high VFA concentration, and was linked to the relative abundance of Methanosarcina in the microbial community. Interactions between substrate, VFA concentration, and the microbial community were observed. Biochar-assisted anaerobic digestion holds promise for the treatment of source-separated wastewater.

Funder

Greater Western Water

Australian Government Research Training Program Scholarship

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3