Terminal-Enhanced Polymerization in the Biosynthesis of Polysialic Acid

Author:

Wang Chongchuan12,Chang Huanan1,Liu Xiaomeng1,Zhao Haiyang1,Guo Jianing1,Peng Shuo1,Wang Wenhao1,Zhu Deqiang12ORCID,Liu Xinli12

Affiliation:

1. State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China

2. Shandong Provincial Key Laboratory of Microbial Engineering, School of Bioengineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China

Abstract

Plasmids are commonly used tools in microbiology and molecular biology and have important and wide-ranging applications in the study of gene function, protein expression, and compound synthesis. The complex relationship between necessary antibiotic addition, compatibility between multiple plasmids, and the growth burden of host bacteria has plagued the wider use of compatibility plasmids. In this study, we constructed the terminal polymerization pathway of PSA by exogenously expressing the neuA, neuD, and neuS genes after the knockdown of Eschesrichia coli BL21 (DE3). Duet series vectors were utilized to regulate the expression level of neuA, neuD, and neuS genes to study the gene expression level, plasmid copy number growth burden, pressure of antibiotic addition, stability of compatible plasmids, and the level of expression stability of exogenous genes, as well as the effect on the biological reaction process. The results showed that the three genes, neuA, neuD, and neuS, were enhanced in the recombinant strain E. coli NA-05, with low copy, medium copy, and high copy, respectively. The effect of PSA synthesis under standard antibiotic pressure was remarkable. The results of this thesis suggest the use of a Duet series of compatible expression vectors to achieve the stable existence and co-expression of multiple genes in recombinant bacteria, which is a good reason for further research.

Funder

Pilot Project for the Integration of Science, Education and Industry, Qilu University of Technology, Shandong Academy of Sciences

Shandong Province Science and Technology SMES Innovation Ability Improvement Project

Dezhou Major Science and Technology Innovation Project and Rizhao Key Research and Development Plan

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3