Lactic Acid Bacteria-Fermented Diet Containing Bacterial Extracellular Vesicles Inhibited Pathogenic Bacteria in Striped Beakfish (Oplegnathus fasciatus)

Author:

Lee Bao-Hong1,Hu Yeh-Fang1,Chu Yu-Ting1ORCID,Wu Yu-Sheng2ORCID,Hsu Wei-Hsuan3ORCID,Nan Fan-Hua1

Affiliation:

1. Department of Aquaculture, National Taiwan Ocean University, Keelung 202301, Taiwan

2. Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan

3. Department of Food Safety/Hygiene and Risk Management, National Cheng Kung University, Tainan 701401, Taiwan

Abstract

In recent years, probiotics have received considerable attention for improving the health of aquaculture organisms, such as fish and shrimp, by stimulating immune activity and increasing growth rates. Oplegnathus fasciatus is a common and economically important cultured fish species in Asia. In this study, we aimed to investigate the potential of lactic acid bacteria (LAB; Limosilactobacillus reuteri)-fermented feed to promote growth and enhance immune function in O. fasciatus. The feed contained the highest proportion of LAB after L. reuteri fermentation for 3 days in anaerobic conditions. Oplegnathus fasciatus was fed LAB-fermented feed for 30 days. The administration of LAB-fermented feed (live bacteria > 109 CFU/g) significantly increased the growth rate (weight gain = 174.8%; FCR = 4.23) and intestinal probiotic levels of O. fasciatus. After LAB-fermented feeding, the immunity index was evaluated by superoxide anion production, the phagocytic activity of leukocytes, and bactericidal and lysozyme activities in the serum of O. fasciatus. We found that LAB-fermented feed treatment potentially elevated the proportions of intestinal Bifidobacterium, Blautia, and Dorea species and reduced pathogenic bacterial growth (Acinetobacter, Escherichia_Shigella, and Megasphaera) in O. fasciatus. This study demonstrated that LAB-fermented feed containing extracellular vesicles improves growth performance and the inhibition of pathogenic Acinetobacter baumannii.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3