A Universal Strategy for the Efficient Expression of Nanobodies in Pichia pastoris

Author:

Zheng Yiheng12,Li Bingkun13,Zhao Shida12,Liu Jiawei14,Li Ding1

Affiliation:

1. Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China

2. College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China

3. College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China

4. Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China

Abstract

In recent years, nanobodies have played an increasingly crucial role in virus neutralization, ELISA detection, and medical imaging. This study aimed to explore a universal expression strategy in Pichia pastoris using three nanobodies, denoted Va, Vb, and Vc, as model proteins. Initially, plasmids pLD-AOXα and pLD-AOX were engineered to minimize the risk of antibiotic resistance gene drift. Optimization of promoters and signal peptides resulted in a 1.38-fold and 1.89-fold increase in Va production. Further optimization of gene dosage led to an additional 1.39-fold enhancement in Va yield. Subsequently, 25 molecular chaperones were co-expressed with Va under the control of the wild-type AOX1 promoter, with HAC1 further increasing Va yield by 1.5-fold. By fine-tuning the promoter strength for HAC1, Va production was increased by 2.41-fold under the control of the 55p promoter. Finally, through high-density fermentation, the Va yield reached 2.13 g/L, representing a 49.8-fold increase compared to the initial strain 1-AOXα-Va in shake-flask culture. Integration of pLD-55p-HAC1 into the GS115 genome resulted in the H55 host, and the transformation of multicopy plasmids into this host led to a 1.98-fold increase in Vb yield and a 2.34-fold increase in Vc yield, respectively. The engineering of antibiotic-free parental plasmids, modification of expression components, gene dosage optimization, and the H55 host are regarded as a composite strategy which will pave the way for efficient expression of nanobodies in the future.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3