A Novel Strategy for Further Enhancing Superior Properties of Thermophilic Endoglucanase from Acidomyces richmondensis

Author:

Wang Shengjie12,Zhang Zherui2,Li Yi3,Yuan Jie12,Dong Haofan12ORCID,Bao Tongtong2,Wu Xin2ORCID,Gu Lingfang4,Zhang Jian1,Gao Le2ORCID

Affiliation:

1. College of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, China

2. Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China

3. College of Mathematics and Computer Science, Dali University, Dali 671000, China

4. Wuhan Sunhy Biology Co., Ltd., Wuhan 430074, China

Abstract

Thermophilic β-1,4-endoglucanases (Cel5A) have garnered significant interest due to their potential applications in various industries, particularly in biofuel production and biorefineries. However, despite inherent stability, thermophilic Cel5A still face challenges in terms of further enhancing their catalytic efficiency and thermostability. In this study, a novel B-factor analysis method was used to predict beneficial amino acid substitutions within a 4 Å radius of the catalytic site in the tunnel of thermophilic Cel5A from Acidomyces richmondensis (ArCel5A). A combined strategy involving site-saturation mutagenesis and high-throughput screening was employed to identify the variants with the highest endoglucanase activity. Genomic sequencing revealed a mutation at position 299 in the starting strain T. reesei A2H, where the nucleotide sequence changed from TAC to TGC, resulting in a corresponding amino acid substitution from Tyrosine(Y) to Cystine(C). The endoglucanase activity of the mutant ArCel5A reached 3251 IU/mL, representing an 85.2% increase compared to wild-type ArCel5A at the fermentation time of 94 h. Significantly, the ArCel5A-Y299C mutant showed superior thermostability, retaining 93.8% of its initial activity after 30 min at 70 °C, and 91.5% after 10 min at 80 °C. Various computational simulation methods confirmed that the Y299C mutation enhanced the stability of the catalytic pocket, thereby improving the overall stability and catalytic efficiency of ArCel5A. This study offers an effective strategy for mining target sites for rational mutagenesis based on highly conserved sequences, which simultaneously improves both the thermostability and catalytic efficiency of thermophilic Cel5A.

Funder

National key R&D program of China

Strategic Priority Research Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Jilin Province and Chinese Academy of Sciences Science and Technology Cooperation High-tech Industrialization Fund Project

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3