Effects of Different Fiber Substrates on In Vitro Rumen Fermentation Characteristics and Rumen Microbial Community in Korean Native Goats and Hanwoo Steers

Author:

Kim Seon-Ho,Sung Ha-GuynORCID

Abstract

Korean native goats (Capra hircus coreanae) (KNG) and Hanwoo (Bos taurus coreanae) are indigenous breeds inhabiting Korea. This study compared the in vitro rumen fermentation characteristics, dry matter (DM) degradation, and ruminal microbial communities of Korean native goats and Hanwoo steers consuming rice hay (RH) and cotton fiber (CF). The pH, ammonia-nitrogen (NH3-N), and total volatile fatty acids (VFAs) production significantly differ (p < 0.05) across species in all incubation times. After 24 h, the pH, NH3-N, and total VFAs production were higher in Korean native goats than in Hanwoo steers. Total gas, molar proportion of propionate, and total VFAs were higher (p < 0.05) in RH than in CF for both ruminant species. DM digestibility of both substrates were higher (p < 0.05) in Hanwoo steers than in KNG. Both treatments in KNG produced higher (p < 0.01) microbial DNA copies of general bacteria than those in Hanwoo steers. Butyrivibrio fibrisolvens and Fibrobacter succinogenes had significantly higher DNA copies under RH and CF in Hanwoo steers than in Korean native goats. B. fibrisolvens, Ruminococcus albus, and Ruminococcus flavifaciens after 24 h of incubation had a higher abundance (p < 0.05) in RH than in CF. Overall results suggested that rumen bacteria had host-specific and substrate-specific action for fiber digestion and contribute to improving ruminal functions of forage utilization between ruminant species.

Funder

National Research Foundation of Korea (NRF), funded by the Korean government

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3