Biological Potential of Alternative Kombucha Beverages Fermented on Essential Oil Distillation By-Products

Author:

Ranitović Aleksandra,Šovljanski OljaORCID,Aćimović MilicaORCID,Pezo LatoORCID,Tomić AnaORCID,Travičić VanjaORCID,Saveljić AnjaORCID,Cvetković Dragoljub,Ćetković Gordana,Vulić JelenaORCID,Markov Siniša

Abstract

The complete waste streams (solid waste residue, wastewater, and hydrolate) from the essential oil production of basil, chamomile, lavender, rosemary, and hyssop plants were used as a cultivation media for fermentations of a health-beneficial beverage called kombucha. Considering that these waste streams have not been used as a medium for obtaining kombucha, the main focus of this study was on the biological profiling and sensory analysis of newly-obtained kombucha beverages. According to fermentation parameters and advanced mathematical modelling, it can be concluded that kombucha made from chamomile essential oil by-products achieved the fastest successful kombucha fermentation, with a maximal titratable acidity of 7.2 g/L and a minimal pH value of 2.8. The results of other kombucha fermentations varied between the chosen plant and the waste stream used for beverage production. The obtained phenol and flavonoid contents were in the range of 12.4–56.46 mg GA/100 mL and 0.25–5.07 mg RU/100 mL, respectively. Higher antioxidant capacity as well as anti-inflammatory and antihyperglycemic activities of all kombucha beverages were observed compared to controls. Briefly, achieved DPPH, ABTS, and reducing power values were in the range 30.28–73.70, 192.25–683.29, and 19.37–82.76 mmol TE/100 mL, respectively. According to sensory analysis, the best performance or complete acceptability was noted for kombucha beverages made from lavender and hyssops (in the case of solid waste stream mixed with hydrolate) as well as basil (in the case of concentrated wastewater and hydrolate).

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3