Sensitivity Analysis and Anaerobic Digestion Modeling: A Scoping Review

Author:

Barahmand ZahirORCID,Samarakoon Gamunu

Abstract

A growing awareness of global climate change has led to an increased interest in investigating renewable energy sources, such as the anaerobic digestion of biomass. This process utilizes a wide range of microbial communities to degrade biodegradable material in feedstock through a complex series of biochemical interactions. Anaerobic digestion exhibits nonlinear dynamics due to the complex and interacting biochemical processes involved. Due to its dynamic and nonlinear behavior, uncertain feedstock quality, and sensitivity to the process’s environmental conditions, anaerobic digestion is highly susceptible to instabilities. Therefore, in order to model and operate a biogas production unit effectively, it is necessary to understand which parameters are most influential on the model outputs. This also reduces the amount of estimation required. Through a scoping review, the present study analyzes the studies on the application of sensitivity analysis in anaerobic digestion modeling. Both local and global sensitivity analysis approaches were carried out using different mathematical models. The results indicate that anaerobic digestion model no.1 (ADM1) was the most commonly used model for analyzing sensitivity. Both local and global sensitivity analyses are widely employed to investigate the influence of key model parameters such as kinetic, stoichiometric, and mass transfer parameters on model outputs such as biogas production, methane concentration, pH, or economic viability of the plant.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Reference79 articles.

1. Development of a Sensitivity Analysis Method to Highlight Key Parameters of a Dry Anaerobic Digestion Reactor Model;Biochem. Eng. J.,2021

2. A New Waste Characterization Method for the Anaerobic Digestion Based on ADM1;Chem. Eng. Commun.,2017

3. Biogas Production From Agricultural Residues: A Review;Curr. Biochem. Eng. (Discontin.),2016

4. Review on Anaerobic Digestion Models: Model Classification & Elaboration of Process Phenomena;Renew. Sustain. Energy Rev.,2022

5. Solubilization of Particulate Organic Carbon during the Acid Phase of Anaerobic Digestion;J. Water Pollut. Control Fed.,1981

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3