Lactobacillus rhamnosus Hsryfm 1301 Fermented Milk Regulates Lipid Metabolism and Inflammatory Response in High-Fat Diet Rats

Author:

Qu HengxianORCID,Zong Lina,Sang Jian,Liang Jiaojiao,Wa Yunchao,Chen Dawei,Huang Yujun,Chen Xia,Gu Ruixia

Abstract

A rat model of disordered lipid metabolism was established to study the regulation of lipid metabolism and inflammatory response by Lactobacillus rhamnosus hsryfm 1301 fermented milk. The results showed that the high-fat diet caused the disorder of lipid metabolism in rats, accompanied by the occurrence of an inflammatory response. After Lactobacillus rhamnosus hsryfm 1301 fermented milk intervention, the blood lipid level was reduced along with the activity of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) as well as triglyceride (TG) and total cholesterol (TC) contents in the liver of rats (p < 0.05), the fat vacuoles of rat hepatocytes were reduced, and the lipid accumulation in the rat liver was decreased. Liver injury was restored. Meanwhile, the levels of free fatty acid (FFA) and fatty acid synthase (FAS), acetyl coenzyme A carboxylase (ACC), lipoprotein esterase (LPL) and hepatic lipase (HL) in serum and liver of rats were significantly lower than those in the model group (p < 0.05), which indicated that fatty acid synthesis was inhibited, fatty acid production was reduced and lipid metabolism was restored to balance. In addition, the levels of reactive oxygen species (ROS) and inflammatory factors in the serum of rats were also significantly reduced (p < 0.05), and the inflammatory response of rats was restored. Lactobacillus rhamnosus hsryfm 1301 fermented milk could not only inhibit fatty acid synthase but reduce the production of excessive fatty acids, thus reducing fat accumulation, restoring the balance of lipid metabolism and alleviating the inflammatory response in rats. At the same time, it can also reduce the level of ROS through the antioxidant effect, alleviate the inflammatory response, and thus alleviate the disorder of lipid metabolism.

Funder

Innovation and Entrepreneurship Training Program of Jiangsu

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3